Warning: include(/home/quintpub/public_html/journals/prd/includes/code.php) [function.include]: failed to open stream: No such file or directory in /home/quintpub/public_html/journals/prd/abstract.php on line 2

Warning: include() [function.include]: Failed opening '/home/quintpub/public_html/journals/prd/includes/code.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in /home/quintpub/public_html/journals/prd/abstract.php on line 2
Effect of Ceramic Barriers of Different Thicknesses on Microhardness of Light-Cured Resin Cements
Warning: include(/home/quintpub/public_html/journals/prdincludes/05_update/javascript.php) [function.include]: failed to open stream: No such file or directory in /home/quintpub/public_html/journals/prd/abstract.php on line 39

Warning: include() [function.include]: Failed opening '/home/quintpub/public_html/journals/prdincludes/05_update/javascript.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in /home/quintpub/public_html/journals/prd/abstract.php on line 39
Follow Us      

LOGIN

   Official Journal of The Academy of Osseointegration

 
Share Page:
Back

Volume 37 , Issue 4
July/August 2017

Pages e204–e209


Effect of Ceramic Barriers of Different Thicknesses on Microhardness of Light-Cured Resin Cements


Yasmin Alves do Nascimento, DDS/Ayla Macyelle de Oliveira Correia, DDS, MS/Darlon Martins Lima, DDS, MS, PhD/Sandro Griza, DDS, MS, PhD/Wilton Mitsunari Takeshita, DDS, MS, PhD/Adriano Augusto Melo de Mendonça, DDS, MS, PhD


PMID: 28609496
DOI: 10.11607/prd.3180

This study evaluated the microhardness of two resin cements and a low-viscosity resin composite when light-cured under different ceramic thicknesses. A total of 20 samples (10.0 × 1.0 mm) of each material were polymerized by means of a LED light source with an intensity of 1,100 mW/cm2 for 20 seconds. For each experimental group, different ceramic thicknesses (0.5 mm, 1.0 mm, and 1.5 mm) were applied to each sample. For the control group, the samples were polymerized without the presence of ceramics. Each material was then stored in dry vials that inhibited the passage of light for a period of 24 hours. After that time, each sample underwent Vickers hardness test (HMV, Shimadzu: 25 g/10 seconds). The data were collected and analyzed using analysis of variance and Tukey test (P < .05). For the control group, RelyX Veneer (3m ESPE), Filtek Flow Z350XT (3M ESPE), and Allcem Veneer (FGM) showed mean microhardness values and standard deviations of 44.42 ± 4.9, 44.25 ± 2.4, and 31.71 ± 2.4, respectively. The lowest microhardness value (24.13) was found when the greatest ceramic thickness (1.5 mm) was used on the Allcem Veneer cement (P < .01). The microhardness of resin-based materials was affected when the 1.5-mm-thick ceramic material was interposed during photoactivation.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2020 Quintessence Publishing Co, Inc

PRD Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help